Sunday, December 28, 2008

the magician


it was too late
when I found out
she was made all out of
detonators & plastic explosives
and that I had held her
too close 
for too long
now 
I find myself blown 
into bits
left picking up 
scattered pieces
& holding my heart
in disengaged hands
here is only a ghost 
of a former 
self
nothing
but a trick 
for the eyes
projected thru 
this deep fog
with smoke 
& mirrors.


Thursday, December 25, 2008

bah! humbug!

Cindy-Lou Who: Santa, what's the meaning of Christmas?
The Grinch: [bursts through the Christmas tree] VENGEANCE! 
The Grinch:
[calmly] I mean. . . presents, I suppose. 







Friday, December 19, 2008

Dharmis, Yogis & Zen

ok so I started a Dharmis, Yogis & Zenists group on Twitter. Not sure how to promote it..

Promoting the Lesbians group was simple enough but this seems a bit different. Perhaps I'll leave it to promote itself and see what happens! Hahaha.. :) Yeah, that sounds about right. Perhaps members will be attracted thru bhutatathata..

Ok, I admit, I am just looking for an excuse to use the word, bhutatathata because that is my favorite word.. :D Let's say it again.. bhutatathata.. bhutatathata.. yay! bhutatathata.. *sigh* Alright, I feel better now.

Hmm.. so where to find other Dharmis? I know they are somewhere out in the ether.. I guess I could start to scrounge Twitter for them, but then what? I have no particular reason for wanting to find them. Just something to play with, I suppose, like this blog post. :P

Oh, but I made the image above for the group then decided against posting it there, so I'm posting it here instead for now.. Nevermind, I just posted the image at the group too.. Hmm.. It was pretty uneventful. It will be nice if the developers improve the capabilities of Twitter Groups.

Tuesday, December 9, 2008

mandala 001

ok so.. i've noticed that most of my blogging, writing, sentences.. etc seem to start with "ok, so.." anyway, the rest seem to start with "anyway." but none of that is what I intend to blog about today..

I was inspired to make a first attempt at creating a mandala without really knowing what i'm doing here.. so I am posting the result..



also, here is what i've noticed.. since I made the mandala, I have been tempted to compare it to other mandalas, which is a device of ego to attach itself to something. :) silly ego! :P hahaha..

Tuesday, November 18, 2008

crucifix | crucible

i'm feeling nailed to this moment like the image of the body of christ nailed to the cross.



i'm draped listless and doubting.. wondering "hast thou forsaken me?" while the prospect of death looms circling overhead like a flock of buzzards spying a fresh new carcass.

even in the wake of new-found love, I am imprisoned in time looking to the next moment for salvation from boundless desires, empty frustrations & reasonless fears.

yet my salvation is only to be found in the life that drips from my wounds as I hang here on this moment suspended in this prison of time.

Monday, October 20, 2008

WTF is mandelbrot set?!

I don't know why I like this stuff.. I don't pretend to completely understand it. I think it just infinitely zooms in (or out) on itself with a repetitious pattern & maintaining its integrity throughout.. I think that's beautiful..

The following is taken from Wikipedia, the free encyclopedia

In mathematics, the Mandelbrot set, named after Benoît Mandelbrot, is a set of points in the complex plane, the boundary of which forms a fractal. Mathematically, the Mandelbrot set can be defined as the set of complex c-values for which the orbit of 0 under iteration of the complex quadratic polynomial xn+1 = xn2 + c remains bounded.[1] That is, a complex number, c, is in the Mandelbrot set if, when starting with x0=0 and applying the iteration repeatedly, the absolute value of xn never exceeds a certain number (that number depends on c) however large n gets.

Eg. c = 1 gives the sequence 0, 1, 2, 5, 26… which leads to infinity. As this sequence is unbounded, 1 is not an element of the Mandelbrot set.

On the other hand, c = i gives the sequence 0, i, (-1 + i), -i, (-1 + i), -i…, which is bounded, and so it belongs to the Mandelbrot set.

When computed and graphed on the complex plane, the Mandelbrot Set is seen to have an elaborate boundary, which does not simplify at any given magnification. This qualifies the boundary as a fractal.

The Mandelbrot set has become popular outside mathematics both for its aesthetic appeal and for being a complicated structure arising from a simple definition. Benoît Mandelbrot and others worked hard to communicate this area of mathematics to the public.


Phoenix Set magnification

For programmers:
The definition of the Mandelbrot set, together with its basic properties, suggests a simple algorithm for drawing a picture of the Mandelbrot set. The region of the complex plane we are considering is subdivided into a certain number of pixels. To colour any such pixel, let be the midpoint of that pixel. We now iterate the critical value c under Pc, checking at each step whether the orbit point has modulus larger than 2.

If this is the case, we know that the midpoint does not belong to the Mandelbrot set, and we colour our pixel. (Either we colour it white to get the simple mathematical image or colour it according to the number of iterations used to get the well-known colourful images). Otherwise, we keep iterating for a certain (large, but fixed) number of steps, after which we decide that our parameter is "probably" in the Mandelbrot set, or at least very close to it, and colour the pixel black.

In pseudocode, this algorithm would look as follows.
For each pixel on the screen do:
{
x = x0 = x co-ordinate of pixel
y = y0 = y co-ordinate of pixel
iteration = 0
max_iteration = 1000
while ( x*x + y*y <= (2*2) AND iteration < max_iteration )
{
xtemp = x*x - y*y + x0
y = 2*x*y + y0
x = xtemp
iteration = iteration + 1
}
if ( iteration == max_iteration )
then
colour = black
else
colour = iteration
plot(x0,y0,colour)
}
where, relating the pseudocode to c and Pc:
* z = x + iy
* z2 = x2 + i2xy - y2
* c = x0 + iy0
and so, as can be seen in the pseudocode in the computation of x and y:
* x = Re(z2 + c) = x2 - y2 + x0 and y = Im(z2 + c) = 2xy + y0

To get colourful images of the set, the assignment of a colour to each value of the number of executed iterations can be made using one of a variety of functions (linear, exponential, etc). One practical way to do it, without slowing down the calculations, is to use the number of executed iterations as an entry to a look-up colour palette table initialized at startup. If the colour table has, for instance, 500 entries, then you can use n mod 500, where n is the number of iterations, to select the colour to use. You can initialize the colour palette matrix in various different ways, depending on what special feature of the escape behavior you want to emphasize graphically.

Monday, October 6, 2008

unbound

Let there be spaces in your togetherness,
And let the winds of the heavens dance between you.
Love one another but make not a bond of love:
Let it rather be a moving sea between the shores of your souls.
---
Qu'il y ait des espaces dans votre entente.
Que les vents des cieux puissent danser entre vous.
Aimez-vous, l'un l'autre, mais ne faites pas de l'amour un carcan:
Qu'il soit plutôt mer mouvante entre les rives de vos âmes.
- Khalil Gibran - The Prophet, (1923)

[consciousness]
[transcendence]
[ * ]
[mind]insightfreedom
space/ethervoice - intuitioncreation
airlovesurrender
firepassion - powercontrol
watersex - fluiditypossession
earthfear - securitybondage

Sunday, October 5, 2008

la petite mort

obliteration

love

wanton

passion

revelation

wild

abandon

death



annihilation

desire

lustful

dissolution

elation

rigid

exhilaration

rebirth